LETTERS TO THE EDITORS

Inductive Effects and Product Distributions in the Dehydration of Secondary Alcohols on Alumina

Recently Dautzenberg and Knözinger (1) reported that the 1-alkene selectivity from the dehydration of 2-ols with the general formula RCH₂CHOHCH₃, where R varied from methyl to *tert*-butyl, fit a linear free energy relationship (LFER) when correlated with Taft's inductive constant, σ^* (2). This is an outstanding example of catalysis by a metal oxide since it relates selectivity to a thermodynamic property.

The data in Ref. (1) showed that only 29% of the 1-alkene was formed by the dehydration of 2-butanol. Pines and Haag (3), on the other hand, have reported that dehydration of 2-butanol yielded 26% 1-butene over alkali-free alumina; as the alkali was increased to 0.38, 1.0, and 1.5% the 1-butene content increased to 38.4, 40.3, and 44.0%, respectively. Substituting the 44% 1-butene obtained by Pines and Haag from 2-butanol dehydration for the 29% plotted in Ref. (1) would render the correlation between selectivity and inductive effects less convincing.

We have previously shown that 1-heptene, added to a 2-octanol reactant, does not undergo isomerization during conversion of the alcohol at approximately 1 atm alcohol pressure; hence, the octene products would not undergo isomerization once they desorbed to the gas phase. However, at high conversion and a low alcohol partial pressure, alkene isomerization does become noticeable. Since Dautzenberg and Knözinger apparently carried out their experiments at less than 1 atm alcohol pressure, isomerization may have influenced their results.

We have obtained the alkene selectivities for 2-ol conversion using porous and nonporous γ -alumina and with a preparation based on Nordstrandite alumina. The three aluminas, pretreated with hydrogen at 550°C, produced the same alkene distribution from 2-octanol. The results presented inthis communication obtained with nonporous Alon-C and Nordstrandite aluminas. The experimental procedure and analytic methods have been described (4). The selectivities are defined as they were in Ref. (1):

$$S_{21} = rac{ ext{conen of product 2-olefins}}{ ext{conen of product 1-olefin}} \,,$$

$$S_{\text{ct}} = rac{ ext{conen of } cis\text{-2 olefin}}{ ext{conen of } trans\text{-2-olefin}} \,.$$

Our selectivities, obtained in the temperature range of 180-200°C, are compared to those reported by Dautzenberg and Knözinger in Table 1. For R = ethyl, *n*-propyl, and i-propyl there is close agreement between both sets of data for both S_{21} and S_{ct} . With 2-butanol we obtained three values of S_{21} for the three reaction conditions. In this study with 2-butanol, alkene selectivities are the average for four samples collected during the course of a run. The greatest deviation from the average for any isomer in any of the three runs was less than $\pm 1.5\%$. The deviation obtained with the other alcohols did not differ appreciably from that of 2-butanol. When 2-butanol was diluted with hydrogen to give approximately 0.3 atm alcohol partial pressure, we obtained a value of

TABLE 1
Comparison of the Selectivities for the Dehydration of Secondary Alcohols
on Alumina from Ref. (1) and the Present Study

Substituent R	σ*	$E_{ m s}$	From Ref. (1)		From this study	
			S_{21}	$S_{ m et}$	S_{21}	$S_{ m ct}$
Me	0	0	2.4	5.9	2.4	6.3 (0.3 atm alcohol)
					1.8	4.9 (1 atm 2-butanol)
					1.5	5.1 (1 atm mixture of
						2-butanol/2-octanol)
\mathbf{Et}	-0.1	-0.07	1.5	5.5	1.5	5.2
$n ext{-}\mathrm{Pr}$	-0.12	-0.36	1.3	5 .2	1.2	6.1
i-Pr	-0.19	-0.47	0.96	4.7	1.1	5.1
t-Bu	-0.30	-1.54	0.64	2.1	0.75	1.7
$n ext{-Pe}$	_			_	1.1	10

2.4 for S_{21} ; this is the same value obtained by Dautzenberg and Knözinger. When we converted pure 2-butanol at 1 atm alcohol pressure S_{21} declined to 1.8; for an equal molar mixture of 2-butanol and 2-octanol with a total alcohol pressure of 1 atm S_{21}

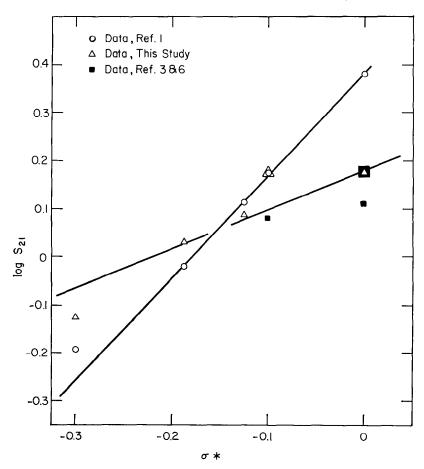


Fig. 1. Correlation of the selectivity S_{21} with Taft's inductive constants.

had the low value of 1.5. S_{21} was 1.1 for the octenes formed during the conversion of the 2-butanol/2-octanol mixture; this is the value we obtained for pure 2-octanol (4). Our value of 1.5 for S_{21} from the conversion of 2-butanol in the alcohol mixture is only slightly higher than the value of 1.3 obtained by Pines and Haag (3) for alumina containing 1.5% alkali.

At a given temperature, 2-butanol has a considerably higher vapor pressure than does 2-octanol; hence, at a given alcohol pressure 2-butanol will have a much smaller relative pressure (P/P_0) , and a lower alumina surface coverage, than 2-octanol. Thus, our results and those of Pines and Haag (3) suggest that 2-butanol at 1 atm or less does not provide sufficient alumina surface coverage by alcohol to prevent a secondary isomerization reaction from altering the initial alkene distribution.

Figure 1 is a plot showing the correlation of the selectivity, obtained by Dautzenberg and Knözinger, by Pines and co-workers and in the present study, with Taft's inductive constants. Our results, as well as those of Dautzenberg and Knözinger, give a good correlation. However, our point corresponding to 2-pentanol (R = Et), while agreeing with the one obtained by Dautzenberg and Knözinger, is above our best-fit line. If butenes undergo isomerization due to a low alcohol surface coverage, it would be expected that pentenes would isomerize but to a lesser degree. The data point corresponding to the pentene selectivity obtained by Pines and co-workers (5), using pyridine as an acidity poison, does fit our curve. In the present study, the total change in the 1-alkene percentage was about 5 mole% in going through the series from R = methyl to i-propyl. Thus, our correlation, even if valid, does not indicate a strong influence on S_{21} by inductive effects.

Neglecting R = t-butyl, our S_{ct} selectivity is essentially the same for all of

the alcohols in Fig. 1. Including the data for 2-octanol, there may be an increase in $S_{\rm ct}$ for normal 2-ols as the alkyl group R increases in carbon number. Thus, $S_{\rm ct}$ will not correlate with either σ^* or Taft's steric constants, E_s . Even in Ref. (1), where a linear plot was obtained, E_s for R = Me through i-Pr are so similar that the curve may be dominated by the single point for t-Bu.

In summary, it appears that the low 1-butene content of 29 mole% is caused by an isomerization due to a low relative pressure of 2-butanol. When the isomerization is suppressed by alkali or a higher surface alcohol coverage, the 1-butene selectivity from 2-butanol is only slightly lower than that from the other 2-ols used in the study described in Ref. (1). The present data show only a slight dependence of S_{21} on the inductive effect of the alkyl group.

ACKNOWLEDGMENT

Acknowledgment is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

REFERENCES

- Dautzenberg, D., and Knözinger, H., J. Catal. 33, 142 (1974).
- Wells, P. R., "Linear Free Energy Relationships." Academic Press, London, 1968.
- Pines, H., and Haag, W., J. Amer. Chem. Soc. 83, 2847 (1961).
- 4. Davis, B. H., J. Org. Chem. 37, 1240 (1972).
- Pines, H., and Manassen, J., Advan. Catal. 16, 82 (1966).

Burton H. Davis¹

Potomac State College Kayser, West Virginia 26726

Received October 30, 1978; revised February 9, 1979

¹ Present address: Institute for Mining and Minerals Research, University of Kentucky, Lexington, Ky. 40583.